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1

Congruent Domains in the Euclidean Plane

Let K be a convex domain. According to the classical result of L. Fejes Tóth
[FTL1950], the density of a packing of congruent copies of K in a hexagon
cannot be denser than the density of K inside the circumscribed hexagon
with minimal area. Besides this statement, we verify that the same density
estimate holds for any convex container provided the number of copies is
high enough. In addition, we show that if K is a centrally symmetric domain
then the inradius and circumradius of the optimal convex container cannot be
too different. Following L. Fejes Tóth [FTL1950] in case of coverings, the
analogous density estimate is verified under the “noncrossing” assumption,
which essentially says that the boundaries of any two congruent copies inter-
sect in two points. In case of both packings and coverings, congruent copies
can be replaced by similar copies of not too different sizes. Finally, we verify
the hexagon bound for coverings by congruent fat ellipses even without the
noncrossing assumption, a result due to A. Heppes.

Concerning the perimeter, we show that the convex domain of minimal
perimeter containing n nonoverlapping congruent copies of K gets arbitrarily
close to being a circular disc for large n. However, if the perimeter of the
compact convex set D covered by n congruent copies of K is maximal then
D is close to being a segment for large n.

1.1. Periodic and Finite Arrangements

Let K be a convex domain. Given an arrangement of congruent copies of
K that is periodic with respect to some lattice � (see Section A.13) and
given m equivalence classes, it is natural to call m · A(K )/det � the density
of the arrangement. We define the packing density δ(K ) to be the supre-
mum of the densities of periodic packings of congruent copies of K and
the covering density to be the infimum of the densities of periodic coverings
by congruent copies of K . In addition, we define �(K ) = A(K )/δ(K ) and
�(K ) = A(K )/ϑ(K ).

3
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4 Congruent Domains in the Euclidean Plane

It is not hard to show that optimal clusters asymptotically provide the same
densities as periodic arrangements (see Lemma 1.1.2). Our main result is that,
in the planar case, finite packings are not denser (asymptotically) than periodic
packings, and the analogous statement holds for coverings. We note that this
is a planar phenomenon: Say, if d ≥ 3 and K is a right cylinder whose base
is a (d − 1)-ball, then linear arrangements are of density one, whereas any
periodic packing is of density at most δ′ for some δ′ < 1, and any periodic
covering is of density at least ϑ ′ for some ϑ ′ > 1 (see Lemma 7.2.5).

Theorem 1.1.1. Let K be a convex domain, and let n tend to infinity.

(i) If Dn is a convex domain of minimal area containing n nonoverlapping
congruent copies of K then A(Dn) ∼ n · �(K ).

(ii) If D̃n is a convex domain of maximal area that can be covered by n
congruent copies of K then A(D̃n) ∼ n · �(K ).

Since periodic arrangements correspond canonically to finite arrangements
on tori (see Section A.13), �(K ) is the infimum of V (T )/m over all tori T
and integers m such that there exists a packing of m embedded copies of K
on T , and �(K ) is the supremum of V (T )/m over all tori T and integers m
such that there exists a covering of T by m embedded copies of K . The first
step towards verifying Theorem 1.1.1 is the case of clusters.

Lemma 1.1.2. Given convex domains K and D with r (D) > R(K ), let N be
the maximal number of nonoverlapping congruent copies of K inside D, and
let M be minimal number of congruent copies of K that cover D. Then

(i)
(

1 + R(K )
r (D)

)2 · A(D) ≥ N · �(K ) ≥
(

1 − R(K )
r (D)

)2 · A(D);

(ii)
(

1 + R(K )
r (D)

)2 · A(D) ≥ M · �(K ) ≥
(

1 − R(K )
r (D)

)2 · A(D).

Remark. Instead of the upper bound in (i), we actually prove the stronger
estimate A(D + R(K ) B2) ≥ N · �(K ).

Proof. We place K and D in a way that K ⊂ R(K )B2 ⊂ D. In particular,
assuming that K ′ is congruent to K , if the circumcentre c of K ′ lies outside
D + R(K )B2 then K ′ avoids D, and if c ∈ (1 − R(K )/r (D))D then K ′ ⊂ D.
Given a torus T , we write the same symbol to denote a convex domain in R

2

and its embedded image on T .
We present the proof only for packings because the case of cover-

ings is completely analogous. Let T = R
2/� be any torus satisfying that
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C = D + R(K ) B2 embeds isometrically into T , and let K1, . . . , Km be the
maximal number of nonoverlapping embedded copies of K on T . Writing xi

to denote the circumcentre of Ki , we have (see (A.50))∫
T

# ((C + x) ∩ {x1, . . . , xm}) dx = m · A(C). (1.1)

Thus there exists a translate C + x that contains at most k ≤ m · A(C)/A(T )
points out of x1, . . . , xm , say, the points xi1, . . . , xik . After replacing
Ki1, . . . , Kik by the N nonoverlapping embedded copies of K contained in
x + D, we obtain a packing of m − k + N embedded copies of K on T . In
particular, N ≤ k follows by the maximality of m. We conclude

A(D + R(K ) B2) ≥ N · �(K ),

which in turn yields the upper bound in (i).
Turning to (ii), we let λ < 1 satisfy λ · A(C)/�(K ) > �A(C)/�(K )� − 1.

It follows by the definition of �(K ) that there exist a torus T = R
2/�

and m nonoverlapping embedded copies K1, . . . , Km of K on T satisfy-
ing A(T ) < λ−1m�(K ), and D embeds isometrically into T . We define
C = (1 − R(K )/r (D))D; hence, (1.1) yields that some translate C + x con-
tains at least m · A(C)/A(T ) points out of the circumcentres of K1, . . . , Km .
We may assume that these points are the circumcentres of K1, . . . , Kl ;
therefore, l ≥ λ · A(C)/�(K ) and K1, . . . , Kl are contained in D + x .
Thus N ≥ l ≥ A(C)/�(K ) by the definition of λ, completing the proof of
Lemma 1.1.2. �

Proof of Theorem 1.1.1. We present the argument only for packings because
just the obvious changes are needed for the case of coverings. In the following
the implied constant in O(·) always depends only on K .

Theorem 1.1.1 for packings follows from the following statement: If ε > 0
is small, and n > 1/ε5 then

A(Dn) = (1 + O(ε)) · n�(K ). (1.2)

Dense clusters show (see Lemma 1.1.2) that

A(Dn) ≤ (1 + O(ε)) · n�(K ).

Therefore, it is sufficient to verify that

A(Dn) ≥ (1 − O(ε)) · n�(K ). (1.3)

If r (Dn) > 1/ε then (1.3) follows from Lemma 1.1.2. Thus we assume
that r (Dn) ≤ 1/ε, a case that requires a more involved argument. We actually
prove that there exists a rectangle R that contains certain N congruent copies
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of K , where

A(R)

N
≤ (1 + O(ε)) · A(Dn)

n
. (1.4)

Since the minimal width w of Dn is at most 3/ε according to the Steinhagen
inequality (Theorem A.8.2), there exists a rectangle R̃ such that its sides
touch Dn , and two parallel sides of R̃ are of length w. We say that these sides
are vertical; hence, Dn has a vertical section of length w. Writing l to denote
the length of the horizontal sides, we have A(Dn) ≥ wl/2. For k = �1/ε�, we
decompose R̃ into k3 congruent rectangles R1, . . . , Rk3 in this order, where the
vertical sides of Ri are of length w and the horizontal sides are of length l/k3.

Out of the circumcentres of the n nonoverlapping congruent copies of K
that lie in Dn , let ni be contained in Ri . Now the total area of R1, . . . , Rk2+1

and of Rk3−k2, . . . , Rk3 is(
1 + 1

k2

)
2wl

k
≤ (1 + O(ε)) 4εA(Dn) ≤ (1 + O(ε)) 4�(K ) · εn,

and hence
∑k3−k2

i=k2+1 ni ≥ (1 − O(ε)) n. In particular, there exists some index
j such that k2 + 1 ≤ j ≤ k3 − k2 and

A(R j ∩ Dn)

n j
≤ (1 + O(ε)) · A(Dn)

n
. (1.5)

Let R′ be the rectangle whose sides are vertical and horizontal, with each
touching R j ∩ Dn . We write a to denote the common length of the vertical
sides of R′, which readily satisfies a ≥ 2r (K ). Since w/k2 < 4ε, we de-
duce that R j ∩ Dn contains a rectangle whose horizontal side is of length
l/k3, and the vertical side is of length a − 8ε. In particular, A(R′) is at
most (1 + O(ε))A(R j ∩ Dn). Finally, the rectangle R whose horizontal sides
are of length l/k3 + 2R(K ) and vertical sides are of length a contains
N = n j nonoverlapping congruent copies of K . Now 3l/ε ≥ n A(K ) yields
l/k3 ≥ 1/[4A(K )ε]. Thus we conclude (1.4) by (1.5).

Since the arrangement in R induces a periodic packing of K , (1.4) readily
yields (1.3) and hence Theorem 1.1.1 as well. �

Remark 1.1.3. Given a strictly convex domain K , if Dn is a convex domain
with minimal area that contains n nonoverlapping congruent copies of K then
r (Dn) tends to infinity.

We sketch the argument for Remark 1.1.3: We suppose indirectly that
there exists a subsequence of {r (Dn)} that is bounded by some ω > 0. For
any ε > 0, the proof of Theorem 1.1.1 yields a parallel strip �ε and a packing
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� of congruent copies of K inside �ε such that the packing is periodic with
respect to a vector parallel to �ε, the width of �ε is at most 3ω, and the
density of the packing � inside �ε is at least (1 − ε) δ(K ). We reflect this
arrangement through one of the lines bounding �ε and write �′ to denote
the image of �. Because K is strictly convex, there exist positive ν1 and ν2

depending only on K with the following property: Translating the packing
�′ first parallel to �ε by a vector of length ν1, then towards �ε orthogonally
by a vector of length ν2, we obtain an arrangement �′′ such that the union
of � and �′′ forms a packing. If ε < ν2/(2ω) then the union of � and �′′

determines a periodic packing in the plane whose density is larger than δ(K ).
This contradiction verifies that r (Dn) tends to infinity.

Open Problems.
(i) Let K be a convex domain that is not a parallelogram. We write Dn

(D̃n) to denote a convex domain with minimal (maximal) area that
contains n nonoverlapping congruent copies of K (i.e., is covered by
n congruent copies of K ). Is

r (Dn), r (D̃n) > c
√

n

for a suitable positive constant c depending on K ? If the answer is yes
then the ratio R(Dn)/r (Dn) stays bounded as n tends to infinity, and
a similar property holds for D̃n .

For packings, various partial results support an affirmative answer:
The statement holds if K is centrally symmetric (see Corollary 1.4.3)
or the packing is translative (see Theorem 2.4.1). Strengthening the
method of Remark 1.1.3 yields that r (Dn) > c 3

√
n holds if K is any

strictly convex domain. For coverings, the statement holds if K is a
fat ellipse (see Theorem 1.7.1) or if K is centrally symmetric and only
translative coverings are allowed (see Corollary 2.8.2).

(ii) Is ϑ(K ) ≤ 2π/
√

27 = 1.2091 . . . for any convex domain K ; namely,
is the covering density maximal for circular discs (see Theorem 1.7.1)?

D. Ismailescu [Ism1998] proved ϑ(K ) ≤ 1.2281 . . . for any convex
domain K . However, ϑ(K ) ≤ 2π/

√
27 if K is centrally symmetric

(see L. Fejes Tóth [FTL1972]).
(iii) Does it hold for any convex domain that there exist a periodic packing

whose density is the packing density and a periodic covering whose
density is the covering density? It is known that there exist no optimal
lattice arrangement for the typical convex domain (see G. Fejes Tóth
and T. Zamfirescu [FTZ1994] and G. Fejes Tóth [FTG1995a]).
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Comments. The packing and covering densities were originally introduced
in the framework of infinite packing and covering of the space (see G. Fejes
Tóth and W. Kuperberg [FTK1993]). Readily, �(K ) ≤ A(K ) ≤ �(K ). W.M.
Schmidt [Sch1961] proved that �(K ) = A(K ) or �(K ) = A(K ) if and only
if some congruent copies of K tile the plane (see also Lemma 7.2.5).

According to the hexagon bound of L. Fejes Tóth [FTL1950] (see The-
orem 1.3.1), �(K ) is at least the minimal area of circumscribed hexagons
for any convex domain K , where equality holds if K is centrally symmetric.
Concerning absolute lower bounds on the packing density, G. Kuperberg and
W. Kuperberg [KuK1990] verified that δ(K ) >

√
3/2 = 0.8660 . . . holds for

any convex domain K . In addition a beautiful little theorem of W. Kuperberg
[Kup1987] states that δ(K )/ϑ(K ) ≥ 3/4, where equality holds for circular
discs. It is probably surprising but the packing density, π/

√
12 = 0.9068 . . .

of the unit disc is not minimal among centrally symmetric convex domains,
which is shown say by the regular octagon. By rounding off the corners of
the regular octagon, K. Reinhardt [Rei1934] and K. Mahler [Mah1947] pro-
posed a possible minimal shape whose density is 0.9024 . . . . P. Tammela
[Tam1970] proved that δ(K ) > 0.8926 for any centrally symmetric convex
domain K .

Concerning coverings, D. Ismailescu [Ism1998] proved ϑ(K ) ≤
1.2281 . . . for any convex domain K . For very long the only convex domains
with known covering densities were the tiles (when the covering density is
one), and circular discs (when the covering density is 2π/

√
27 according

to R. Kershner [Ker1939]; see also Corollary 5.1.2). Recently A. Heppes
[Hep2003] showed that the covering density of any “fat ellipse” (when the
ratio of the smaller axis to the greater axis is at least 0.86) is 2π/

√
27 (see also

Theorem 1.7.1). A substantial improvement is due to G. Fejes Tóth [FTG?b]:
On the one hand [FTG?b] generalized A. Heppes’ theorem to ellipses when
the ratio of the smaller axis to the greater axis is at least 0.741. On the other
hand if K is a centrally symmetric convex domain and r (K )/R(K ) ≥ 0.933
then [FTG?b] proves that �(K ) is the maximal area of polygons with at
most six sides inscribed into K . Readily if K is either type of the convex do-
mains considered in [FTG?b], and C ⊂ K is a convex domain that contains
a centrally symmetric hexagon of area �(K ) then �(C) = �(K ).

1.2. The Hexagon Bound for Packings Inside an Octagon

Given a convex domain K , we write H (K ) to denote a circumscribed con-
vex polygon with at most six sides of minimal area. The aim of this sec-
tion is to verify the hexagon bound for packings of congruent copies of K
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inside a hexagon; namely, the density is at most A(K )/A(H (K )). Later we
will prove the hexagon bound with respect to any convex container (see
Theorem 1.4.1).

Theorem 1.2.1. If a polygon D of at most eight sides contains n ≥ 2 con-
gruent copies of a given convex domain K then

A(D) ≥ n · A(H (K )).

The main idea of the proof Theorem 1.2.1 is to define a cell decompo-
sition of D into convex cells in a way such that each cell contains exactly
one of the congruent copies of K ; hence, the average number of sides of the
cells is at most six according to the Euler formula. Then we verify that the
minimal areas of circumscribed k-gons are convex functions of k (see Corol-
lary 1.2.4), and we deduce that the average area of a cell is at least A(H (K )).
Unfortunately, we cannot proceed exactly like this because no suitable cell
decomposition of D may exist. In spite of this we can still save the essential
properties of a cell decomposition (see Lemma 1.2.2) and verify the hexagon
bound. Lemma 1.2.2 is presented in a rather general setting because of later
applications.

Lemma 1.2.2. Let D be a convex domain that contains the nonoverlapping
convex domains K1, . . . , Kn, n ≥ 2. Then there exist nonoverlapping convex
domains �1, . . . , �n ⊂ D satisfying the following properties:

(i) Ki ⊂ �i .
(ii) �1, . . . , �n cover ∂ D.

(iii) �i is bounded by ki ≥ 2 convex arcs that we call edges. The edges
intersecting int D are segments, and the rest of the edges are the
maximal convex arcs of ∂ D ∩ �i .

(iv) The number b of edges contained in ∂ D satisfy

n∑
i=1

(6 − ki ) ≥ b + 6.

In addition, if D is a polygon of at most eight sides and k∗
i denotes

the number of sides of �i then
∑n

i=1(6 − k∗
i ) ≥ 0.

Proof. Let �1, . . . , �n be nonoverlapping convex domains such that Ki ⊂
�i ⊂ D and the total area covered by the convex domains �1, . . . , �n is
maximal under these conditions. Since two nonoverlapping convex sets can
be separated by a line, each �i is the intersection of a polygon Pi and D.
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Now int Pi ∩ ∂ D consists of finitely many convex arcs whose closures we
call edges of �i . The rest of the edges of �i are the segments of the form
s ∩ D, where s is a side of Pi that intersects int D, and the vertices of �i are
the endpoints of the edges.

It may happen that �1, . . . , �n do not cover D, and we call the closure
of a connected component of int D\∪n

i=1 �i a hole. Let Q be a hole. Then
there exists an edge e1 of some �i1 such that e1 intersects int D, and e1 ∩ ∂ Q
contains a segment s1, where we assume that s1 is a maximal segment in e1 ∩
∂ Q. Since �i1 cannot be extended because of the maximality of

∑
A(� j ), one

endpoint v2 of s1 is contained in the relative interior of e1; hence, v2 ∈ intD.
Therefore, v2 is the endpoint of an edge e2 of some �i2 such that e2 ∩ ∂ Q
contains a maximal segment s2. Continuing this way we obtain that ∂ Q is the
union of segments s1, . . . , sk with the following properties (where s0 = sk): s j

is contained in an edge e j of some �i j , and s j ∩ s j−1 is a common endpoint
v j ∈ int D that is an endpoint of e j and not of e j−1 for any j = 1, . . . , k;
moreover, different si and s j do not intersect otherwise. We deduce that Q is
a convex polygon and Q ⊂ int D.

Now (ii) readily follows; namely, �1, . . . , �n cover ∂ D. Next, we
construct a related cell decomposition � of D by cells �̃1, . . . , �̃n . If there
exists no hole then �̃i = �i . Otherwise, let {Q1, . . . , Qm} be the set of holes,
let q j ∈ int Q j , and we define �̃i to be the union of �i and all triangles of
the form conv{q j , s} such that s is a side of Q j and s ⊂ �i . In particular, the
number of edges of � contained in �̃i is at least ki ; hence

∑
(6 − ki ) ≥ b + 6

is a consequence of Lemma A.5.9. If, in addition, D is a polygon of at
most eight sides then

∑
k∗

i ≤ 8 +∑ ki ; thus b ≥ 2 completes the proof of
Lemma 1.2.2. �

Given the convex domain K , let tK (m) denote the minimal area of a cir-
cumscribed polygon of at most m sides for any m ≥ 3. Next, we show that
tK (m) is a convex function of m, more precisely, that tK (m) is even strictly
convex if K is strictly convex.

Lemma 1.2.3. If K is a strictly convex domain and m ≥ 4 then

tK (m − 1) + tK (m + 1) > 2 tK (m).

Proof. For any m ≥ 3, we choose a circumscribed polygon �m of minimal
area among the circumscribed polygons of at most m sides. Since K is strictly
convex, �m is actually an m-gon, and each side of �m touches K at the
midpoint of the side.
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Let m ≥ 4, and let 3 ≤ k ≤ l satisfy that A(�k) + A(�l) is minimal under
the condition k + l = 2m. We suppose that k < m and seek a contradiction.
The idea is to decrease the total area of �k and �l by interchanging certain
sides. We write p1, . . . , pk and q1, . . . , ql to denote the midpoints of the
sides of �k and �l , respectively, according to the clockwise orientation,
and we write ei and f j to denote the side of �k and �l containing pi and
q j , respectively. For p, q ∈ ∂K , let [p, q) denote the semi open arc of ∂K ,
which starts at p and terminates at q according to the clockwise orientation,
and the arc contains p and does not contain q . The k semi open convex
arcs [pi−1, pi ) on ∂K (with p0 = pk) contain the l ≥ k + 2 midpoints for
�l , and hence either there exists [pi−1, pi ), which contains say q1, q2, q3, or
there exist two semi open arcs of the form [pt−1, pt ) such that each contains
two midpoints from �l . In the first case, let �′

k+1 be obtained from �k by
cutting off the vertex ei−1 ∩ ei by aff f2, and let �′′

l−1 be obtained from �l

by removing the side f2, and hence aff f1 ∩ aff f3 is the new vertex of �′′
l−1.

Then �′
k+1 and �′′

l−1 have k + 1 and l − 1 sides, respectively, and �′′
l−1\�l

is strictly contained in �′
k+1\�k . Therefore,

A(�′
k+1) + A(�′′

l−1) < A(�k) + A(�l).

This is absurd, and hence we may assume that q1, q2 ∈ [p1, p2) and q j−1, q j ∈
[pi−1, pi ) for i �= 2. In this case let �′

k ′ be the circumscribed k ′-gon defined
by affine hulls of

e1, f2, . . . , f j−1, ei , . . . , ek .

In addition, let �′′
l ′ be the circumscribed l ′-gon defined by affine hulls of

f1, e2, . . . , ei−1, f j , . . . , fl ;

thus k ′ + l ′ = 2m. When constructing �′
k ′ and �′′

l ′ , we remove the part of
�k at the corner enclosed by e1 and e2 and cut off by ∂�l , and we add two
nonoverlapping domains contained in this part (where one of the domains
degenerates if q1 = p1). Because the situation is analogous at the corner of
�k enclosed by ei−1 and ei , we deduce that

A(�′
k ′) + A(�′′

l ′) ≤ A(�k) + A(�l).

The polygons were constructed in a way that f j−2 ∩ f j−1 is a common
vertex for �′

k ′ and �l , whereas f j ∩ f j−1 is a vertex for �l but not for �′
k ′ ,

and hence q j−1 is not the midpoint of the side of �′
k ′ containing it. Therefore,

there exists a circumscribed k ′-gon whose area is less than A(�′
k ′), which

contradicts the minimality of A(�k) + A(�l). �
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Given any convex domain K , we define tK (2) = (3/2) tK (3). It is not hard
to see that tK (3) ≤ 2 tK (4); thus Lemma 1.2.3 and approximation yield that
tK (m − 1) + tK (m + 1) ≥ 2 tK (m) holds for any m ≥ 3. Defining tK (s) to be
linear for s ∈ [m − 1, m], we deduce the following:

Corollary 1.2.4 (Dowker theorem for circumscribed polygons). Given a
convex domain K , the function tK (s) can be extended to be a convex and
decreasing function for any real s ≥ 2.

After all these preparations, the proof of the main result is rather simple.

Proof of Theorem 1.2.1. Given the packing of n congruent copies of K inside
the convex polygon D of at most eight sides, we construct the system of cells
according to Lemma 1.2.2. It follows by Lemma 1.2.2 (iv) that the average
number of sides is at most six; hence, the Dowker theorem (Corollary 1.2.4)
yields that the average area of the cells is at least A(H (K )). In turn, we
conclude Theorem 1.2.1. �

Comments. Theorem 1.2.1 is proved by L. Fejes Tóth [FTL1950], and Corol-
lary 1.2.4 is due to C. H. Dowker [Dow1944].

1.3. The Hexagon Bound for Periodic Packings

In this section we estimate the packing density of a convex domain K . We
recall that H (K ) denotes a circumscribed convex polygon with at most six
sides of minimal area.

Theorem 1.3.1. If K is a convex domain then �(K ) ≥ A(H (K )). If in ad-
dition K is centrally symmetric then �(K ) = A(H (K )), and there exists a
lattice packing of K that is a densest periodic packing.

In light of the hexagon bound of Theorem 1.2.1, we only need to construct
suitably efficient lattice packings of centrally symmetric domains. The first
step is

Lemma 1.3.2. If K is an o-symmetric convex domain then H (K ) can be
chosen to be o-symmetric.

Remark. There may exist circumscribed hexagons of minimal area that are
not centrally symmetric. Say the regular octagon can be obtained from a square
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by cutting off four corners, and one circumscribed hexagon of minimal area
is obtained by cutting off two neighbouring corners of the square.

Proof. We may assume that K is strictly convex, in which case we verify that
any circumscribed hexagon H of minimal area is o-symmetric. The minimal-
ity of A(H ) yields that H has six sides that touch K in their midpoints. We
write p1, . . . , p6 to denote these midpoints in clockwise order and write li

to denote the affine hull of the side touching at pi . In addition, let p′
i and l ′i

denote the reflected image of pi and li , respectively, through o.
We suppose that p′

1, is not among p2, . . . , p6 for some i , and we seek
a contradiction. We may assume that the shorter arc p1 p2 of ∂K contains
p′

j−1 and p′
j for some 4 ≤ j ≤ 6 and p′

j �= p2; hence, the shorter arc p′
1 p′

2

contains p j−1 and p j , and p j �= p′
2. Now let P be the circumscribed (2 j − 4)-

gon determined by

l2, . . . , l j−1, l ′2, . . . , l ′j−1,

and let Q be the circumscribed (16 − 2 j)-gon determined by

l j , . . . , l6, l1, l ′j , . . . , l ′6, l ′1.

Thus A(P) + A(Q) ≤ 2A(H ). Since p1 is the midpoint of the side l1 ∩ H ,
it is not the midpoint of the side l1 ∩ Q; hence, Q is not a circumscribed
(16 − 2 j)-gon of minimal area. Therefore, the total area of P and of some
circumscribed (16 − 2 j)-gon is less than 2A(H ), contradicting the Dowker
theorem (Corollary 1.2.4). In turn, we conclude Lemma 1.3.2. �

Proof of Theorem 1.3.1. Let K be a convex domain. Applying Theorem 1.2.1
to large octagons leads to �(K ) ≥ A(H (K )) (see Lemma 1.1.2). Next let
K = −K ; hence, we may assume that H (K ) = −H (K ) (see Lemma 1.3.2).
Writing p1, . . . , p6 to denote the midpoints of the sides of H (K ) according
to the clockwise orientation, we have p2 − p1 = p3. Therefore, 2p1 and 2p2

generates a lattice � such that � + H (K ) is a tiling of the plane, completing
the proof of Theorem 1.3.1. �

Comments. Theorem 1.3.1 is due to L. Fejes Tóth [FTL1950], and
C. H. Dowker [Dow1944] proves Lemma 1.3.2 (actually for circumscribed
2m-gons for any m ≥ 2). According to G. Fejes Tóth and L. Fejes Tóth
[FTF1973a], if a convex domain has k-fold rotational symmetry then there
exists a circumscribed km-gon of minimal area that also has k-fold rotational
symmetry. For a typical convex domain K , G. Fejes Tóth [FTG1995a] con-
structs periodic packings that are denser than any lattice packing, and his
method yields that �(K ) > A(H (K )).
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1.4. Packings Inside Any Convex Container

If K is a centrally symmetric convex domain then we consider packings of
congruent copies of K inside any convex container. We recall that H (K )
denotes a circumscribed convex polygon with at most six sides of minimal
area.

Theorem 1.4.1. Given a centrally symmetric convex domain K , there exists
n(K ) such that if a convex domain D contains n ≥ n(K ) nonoverlapping
congruent copies of K then

A(D) ≥ n · A(H (K )).

Remarks. Lemma 1.1.2 and Theorem 1.3.1 show that the constant A(H (K ))
is optimal. Moreover, the condition that n has to be large in Theorem 1.4.1 is
optimal according to Example 1.4.2.

Proof. If K is a polygon of at most six sides then the hexagon bound readily
holds. We verify that if K is not a parallelogram then there exist positive
constants γ1 and γ2 depending on K such that

A(D) > n · A(H (K )) + γ1 P(D) − γ2. (1.6)

We write K1, . . . , Kn to denote the nonoverlapping congruent copies of K in
D, and we assume that D is the convex hull of these domains. Let �1, . . . , �n

be the convex domains associated to K1, . . . , Kn by Lemma 1.2.2.
In this proof σ always denote an edge of some �i that is contained in

∂ D. Let σ ⊂ �i . We write xi to denote the centre of a circular disc of radius
r (K ) inscribed into Ki and write C(σ, xi ) to denote the union of all segments
connecting xi to the points of σ . Since any line tangent to σ avoids Ki , we
have

A(C(σ, xi )) ≥ r (K )

2
· |σ |, (1.7)

where | · | stands for the arc length. Thus there exist positive constants λ and
c1 such that if |σ | > λ then

A(C(σ, xi )) ≥ tK (2) + c1 |σ |. (1.8)

In addition, we define the acute angle α by the formula sin 3α = r (K )/λ;
hence, if the distance of x from Ki is at most λ for some x �∈ Ki then
the angle of the two half lines emanating from x and tangent to Ki is at
least 3α.
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The following considerations are based on the total curvature β(σ ) of σ

(see Section A.5.1). Let |σ | ≤ λ and β(σ ) < α, and we write p and q to denote
the endpoints of σ . Next we assign a compact convex set �(σ ) to σ . If σ is a
segment then we define �(σ ) to be σ itself. If β(σ ) > 0 then σ intersects Ki ;
thus, we may define �(σ ) to be the triangle pqs, where the half line ps is
tangent to σ , and the line sq contains the other edge of �i emanating from q.
Since the angle of �(σ ) at q is at most π − 2β(σ ) according to the definition
of α, and at p is at most β(σ ), we deduce that

A(Q(σ )) ≤ 1

2
λ2 sin 2β(σ ) ≤ c2 β(σ ). (1.9)

Given any �i , adding all �(σ ) with σ ⊂ �i we obtain a ki -gon; thus,

A(�i ) ≥ tK (ki ) +
∑
σ⊂�i|σ |>λ

c1 |σ | −
∑
σ⊂�i
|σ |≤λ

β(σ )<α

c2 β(σ ) −
∑
σ⊂�i
|σ |≤λ

β(σ )≥α

tK (2). (1.10)

Now the total curvature of ∂ D is 2π , which in turn yields that

A(D) ≥
n∑

i=1

tK (ki ) +
∑
|σ |>λ

c1 |σ | − c2 2π − 2π

α
tK (2). (1.11)

It follows by the convexity of tK (·) (see Corollary 1.2.4) that

tK (ki ) ≥ A(H (K )) + (tK (5) − tK (6)) · (6 − ki ), (1.12)

where tK (5) − tK (6) > 0. We write b to denote the number of edges of
�1, . . . , �n that are contained in ∂ D; hence, Lemma 1.2.2 (iv) leads to

n∑
i=1

tK (ki ) ≥ n · A(H (K )) + (tK (5) − tK (6)) · b

≥ n · A(H (K )) +
∑
|σ |≤λ

tK (5) − tK (6)

λ
· |σ |.

In turn, we conclude (1.6) by (1.11). Now A(D) ≥ n A(K ) and the isoperi-
metric inequality Theorem A.5.7 yield that P(D) > 2

√
A(K )n/π ; therefore,

A(D) > n · A(H (K )) holds for large n. �

One may hope that the n(K ) in Theorem 1.4.1 can be chosen to be an
absolute constant. We present now an example showing that this is not the
case:

Example 1.4.2. Given any c ∈ R, there exists a convex domain K such that
any suitable n(K ) in Theorem 1.4.1 satisfies n(K ) ≥ c.
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Let ε > 0 satisfy (1/12) ln(1/4ε) > c. We fix a system of (x, y) coordi-
nates, and for p = (1, 0) and q = (0, 1), we choose the points p0 and q0 in
the positive corner and on the hyperbole of equation x · y = ε in a way that
the lines pp0 and qq0 are tangent to the hyperbole. We write γ to denote the
union of the segments pp0 and qq0 and the hyperbole arc between p0 and q0.
If s is a segment of length 2(n − 1) parallel to the first coordinate axis then
s + K contains n nonoverlapping translates of K , and

A(s + K ) = 4(n − 1) + A(K ) = 4n − ε · ln
1

4ε
− 2ε.

However, the two coordinate axes and any tangent to the hyperbolic arc
bound a triangle of area 2ε; hence, A(H (K )) ≥ 4 − 12ε. Therefore, n(K ) ≥
(1/12) ln(1/4ε) > c.

Next we investigate the structure of the optimal packing of a large number
of copies.

Corollary 1.4.3. Let K be a centrally symmetric convex domain that is not a
parallelogram, and let Dn be a convex domain of minimal area that contains
n nonoverlapping congruent copies of K . Then

c1
√

n < r (Dn) ≤ R(Dn) < c2
√

n,

where c1, c2 > 0 depend only on K .

Proof. Since H (K ) can be assumed to be centrally symmetric according
to Lemma 1.3.2, (

√
n + 2)H (K ) contains n nonoverlapping translates of

H (K ); hence, (1.6) yields that P(Dn) ≤ c2
√

n. Therefore, readily, R(Dn) ≤
c2

√
n, and we deduce by r (Dn) P(Dn) ≥ A(Dn) (cf. (A.8)) that r (Dn) ≥

c1
√

n. �

Comments. Theorem 1.4.1 and Corollary 1.4.3 are proved in K. Böröczky
Jr. [Bör2003b].

1.5. Noncrossing Coverings

The covering density of a convex domain K is only known in a few cases,
namely, if K is a tile (hence the density is one) or K is centrally symmetric and
close to being a circular disc (see the Comments to Section 1.1). Therefore,
we consider a restricted class of coverings: We say that two convex domains
C1 and C2 are noncrossing if there exist complementary half planes l− and


